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ABSTRACT

The establishment of the anteroposterior (AP) axis is a crucial step
during animal embryo development. In mammals, genetic studies
have shown that this process relies on signals spatiotemporally
deployed in the extra-embryonic tissues that locate the position
of the head and the onset of gastrulation, marked by T/Brachyury
(T/Bra) at the posterior of the embryo. Here, we use gastruloids,
mESC-based organoids, as a model system with which to study
this process. We find that gastruloids localise T/Bra expression
to one end and undergo elongation similar to the posterior region of
the embryo, suggesting that they develop an AP axis. This process
relies on precisely timed interactions between Wnt/B-catenin
and Nodal signalling, whereas BMP signalling is dispensable.
Additionally, polarised T/Bra expression occurs in the absence of
extra-embryonic tissues or localised sources of signals. We suggest
that the role of extra-embryonic tissues in the mammalian embryo
might not be to induce the axes but to bias an intrinsic ability of the
embryo to initially break symmetry. Furthermore, we suggest that
Whnt signalling has a separable activity involved in the elongation of
the axis.

KEY WORDS: Gastruloids, Axial organisation, Organoids,
Symmetry-breaking

INTRODUCTION

The establishment of the anteroposterior (AP) and dorsoventral
(DV) axes during the early stages of animal development is a
fundamental patterning event that guides the spatial organisation of
tissues and organs. Although this process differs from one organism
to another, in all cases it involves a break in an initial molecular or
cellular symmetry, resulting in the precise positioning of signalling
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centres that will drive subsequent patterning events (Meinhardt,
2006). Dipteran and avian embryos provide extreme examples of
the strategies associated with these processes. For example, in
Drosophila, the symmetry is broken before fertilisation within a
single cell, the oocyte, that acquires information for both the AP and
DV axes. This occurs through interactions with surrounding support
cells that control processes of RNA and protein localisation, which
then serve as references for the rapid patterning of the embryo as
the zygote turns into a multicellular system (Riechmann and
Ephrussi, 2001; Roth and Lynch, 2009). On the other hand, in
chickens the processes take place in the developing embryo, within a
homogeneous multicellular system that lacks external references
(Bertocchini and Stern, 2002; Stern, 2006). In mammalian embryos,
the axes are also established within a homogeneous cellular system,
the epiblast, but in this case they are under the influence of an initial
symmetry-breaking event that takes place within the extra-
embryonic tissues, which is then transferred to the developing
embryo (Rivera-Pérez and Hadjantonakis, 2015; Rossant and Tam,
2009; Stern, 2006; Takaoka and Hamada, 2012).

Efforts to understand the molecular mechanisms that pattern early
embryos have relied on genetic approaches such as perturbation
through genetic mutations and a correlation between specific
processes and molecular events, as highlighted by the activity of
specific genes (Anderson, 2000; St Johnston, 2002). Although
successful, these approaches have limitations, as they often conflate
correlation and causation, and, importantly, cannot probe the role of
mechanical forces that have been shown to play a role in the early
events (Hamada, 2015; Hiramatsu et al., 2013). This suggests a need
for a complementary experimental system in which, for example,
rather than removing components, we attempt to build tissues and
organs from cells and learn what the minimal conditions are that
allow this (Sasai et al., 2012). We have recently established a non-
adherent culture system for mouse embryonic stem cells (ESCs) in
which small aggregates of defined numbers of cells undergo
symmetry breaking, polarisation of gene expression and axial
development in a reproducible manner that mirrors events in
embryos (Turner et al., 2014a, 2016b preprint; van den Brink et al.,
2014). We call these polarised aggregates gastruloids and believe
that they provide a versatile and useful system with which to analyse
the mechanisms that mediate cell fate assignments and pattern
formation in mammalian embryos (Simunovic and Brivanlou,
2017).

Here, we show that gastruloids become polarised along two axes
that resemble the AP and DV axes of the mouse embryo in the
absence of extra-embryonic tissues. We focus on the AP polarity
and find that, unlike the embryo, in gastruloids this process does not
require BMP signalling but relies on interactions between Nodal and
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Wnt signalling that are recorded in the expression of the
transcription factor T/Brachyury (T/Bra) at one end of the
gastruloid. Furthermore we show that localisation of Nodal, which
is widely held as being essential for the establishment of the AP
axis, is not required for the polarisation of T/Bra expression. Our
results contrast with a recent report that the trophoectoderm is
required for the expression and localisation of T/Bra in aggregates of
ESCs (Harrison et al., 2017) and suggest that a spontaneous
symmetry-breaking event may occur in the embryo where the
function of the extra-embryonic tissues might be to bias, rather than
to induce, this event to ensure its reproducible location at the initial
site of gastrulation.

RESULTS

Gastruloids exhibit anteroposterior and dorsoventral
organisation in the elongating domain

Our previous studies using gastruloids revealed a longitudinal
polarisation with the expression of T/Bra located towards one end
that will lead an elongation process (Baillie-Johnson et al., 2015; Turner
et al., 2014a; van den Brink et al., 2014). This generates an axis
reminiscent of the AP axis of early mammalian embryos. To follow
these observations and determine whether other markers of the
embryonic axis are present in the emerging structures, we cultured
gastruloids for 120 h and mapped the expression domain of reporters
for three major signalling pathways involved in axial organisation in the
embryo (Wnt/B-catenin, Nodal and BMP) as well as of Cdx2, which
identifies the posterior of the embryo (Fig. 1, Fig. S1 and Materials and
Methods). At 120 h after aggregation (AA), gastruloids that have been
exposed to the Wnt signalling agonist CHIR99201 (Chi) between 48
and 72 h AA, are polarised, with localised expression of T/Bra
(Fig. 1A,C, Fig. S1A,C) and Cdx2 (Fig. 1A, Fig. S1B) at one end of
the protruding tip; they also exhibit a shallow gradient of Wnt
signalling away from the T/Bra-expressing region (Fig. 1C, Fig.
S1C). In most replicate experiments there is no detectable BMP
signalling activity at 120 h (Fig. 1D, Fig. S1C), although on one
occasion we detected expression of the BMP reporter in the anterior
region (Fig. S1C). This arrangement suggests that the elongating
domain of the gastruloid is similar to the tail bud of an embryo
(Beddington et al., 1992; Herrmann, 1991; Wilkinson et al., 1990),

supporting our previous observations that gastruloids have AP
axial organisation.

The extension of the gastruloids is characterised by the
expression of neural progenitor markers (Turner et al., 2014a;
van den Brink et al., 2014). When we correlate the expression of
T/Bra, Cdx2, Sox2 and a Sox1::GFP reporter (Ying et al., 2003)
(Fig. 1A,B, Fig. S1A), we observe an organisation perpendicular
to that of the AP axis, in which high levels of expression of the
neural markers Sox1, Sox2, as well as Cdx2 extend away from the
T/Bra-expressing tip on one side of the gastruloid, with a weak
Cdx2 expression domain directly opposite and just anterior to the
T/Bra-expressing cells (Fig. 1A,B, Fig. S1A). This organisation of
gene expression is reminiscent of the DV organisation of the
embryonic caudal lateral epiblast (CLE) at around E8.5 (see
Kanai-Azuma et al., 2002; Zhao et al., 2014). Furthermore, at this
stage in the embryo, some ventral endodermal cells express Sox17
(see Choi et al., 2012; Saund et al., 2012) and we observe such a
domain here (Fig. 1B, Fig. S3).

Taken together, these results suggest that by 120 h AA, Chi-
treated gastruloids have an organisation reminiscent of that of the
post-occipital region of the embryo. The lack of anterior Sox1
expression suggests that gastruloids lack brain and head structures
(van den Brink et al., 2014); in this sense, they are very similar to
gain-of-function B-catenin mutants (Fossat et al., 2011, 2012; Tam
and Loebel, 2007), consistent with their being exposed to high
levels of Wnt signalling during their early development.

Whnt/-catenin signalling provides robustness to the
polarisation of T/Bra expression

To understand the emergence of the AP polarisation in gastruloids,
we monitored the temporal expression of a T/Bra::GFP reporter line
(Fehling et al., 2003) from the moment of their aggregation, as well
as the patterns of Wnt, Nodal expression (using the Nodal::YFP
reporter mentioned above) and activity [using an AR8::mCherry
line to report on Nodal signalling transduction (Serup et al., 2012)],
and BMP signalling [IBRE::Cerulean (Serup et al., 2012)]. We also
assessed the transition from pluripotency towards differentiation
using the miR-290-mCherry/mir-302-eGFP (Fig. 2A,A’), which
marks distinct stages of pluripotency based on the expression of

Fig. 1. Axial organisation of gastruloids. (A,B) Sox1::GFP
(A) and Nodal::YFP reporter (B) gastruloids pulsed with Chi
(48-72 h AA) and stained with Hoechst and anti-GFP with

either (A) T/Bra (red) and Sox2 (blue), or (B) Cdx2 (red) and
Sox17 (green) at 120 h AA; Hoechst is not shown in A; staining
is representative of at least three replicate experiments; 3D

projections are displayed. (C-F) Gastruloids formed from
T/Bra::GFP (C), BMP (IBRE4::Cerulean; D), Wnt/B-catenin
(TLC2; E) and Sox17::GFP (F) reporter lines following a 48-
72 h Chi pulse. (G) Quantification of reporter expression for the
TLC2 (red) and T/Bra::GFP (green) gastruloids in a posterior-
to-anterior direction. Stimulation results in activation of the
TLC2 reporter with highest expression at the posterior pole.
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Schematic for the stimulation regime is shown in the top-right
corner. Scale bars: 100 ym in C-F.
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Fig. 2. Gastruloids progress through stages similar to the early
embryonic to late epiblast. (A) mir-290-mCherry/mir-302-eGFP gastruloids
imaged by wide-field microscopy for 102 h (n=6 for 24-48 h and 8 for 72-120 h).
The colour changes schematic is shown in A’ (see Parchem et al., 2014 and
Turner et al., 2016b). (B-F) Gastruloids made from the (B) TNGA (n=21),

(C) TLC2 (24 and 48 h n=84; 72 h n=42), (D) Nodal::YFP (Nodal expression;
24 and 48 h n=84; 72 h n=42) and (E) AR8::mCherry (Nodal signalling; n=14)
and (F) IBRE4::Cerulean (BMP reporter; 24 h n=70; 48 and 72 h n=14) cell
lines and treated with a pulse of Chi between 48 and 72 h AA (B-E), or pre-
treated with a pulse of BMP4 (24-48 h) followed by a pulse of Chi (48-72 h; F).
Schematic for the stimulation regime shown in the top-right corner. Scale bars:
100 pm.

reporters for mir-290 (E3.5-6.75) and mir-302 (E4.75-E8.0)
(Parchem et al., 2014), and a reporter for Nanog expression
(TNGA; Fig. 2B) (Chambers et al., 2007).

Analysis of gastruloids grown in N2B27 24 h AA revealed that,
at this time, they are mostly positive for mir-290 (Fig. 2A,A’, red) with
a small proportion of cells within the gastruloid expressing mir-302
(Fig. 2A,A’, green) (Parchem et al., 2014). They also express Nanog
heterogeneously at low levels (Fig. 2B) and exhibit weak
heterogeneous expression of 7/Bra, with a proportion of gastruloids
already displaying signs of bias towards one pole (Fig. 3A, Table S1).
By 48 h AA, the levels of T/Bra::GFP had risen uniformly across the
population and exhibited a more prominent polarisation (Fig. 3A);
continued culture in N2B27 resulted in variations in both the level of
expression and the precision of its polarisation across individual
gastruloids and within experiments (Fig. 3A; DMSO). At this stage,
gastruloids exhibit reduced levels of expression of mir-290 (Fig. 2A,
red) and increased mir-302 (Fig. 2A,A’, green) (Parchem et al., 2014),
with Nanog expression completely abolished (Fig. 2B). During this
early period, we also observed expression of both the Wnt (TLC2;
Fig. 2C) and Nodal::YFP reporters (Fig. 2D), but no detectable BMP
activity (Fig. 2F), suggesting that the cells are producing ligands for
Wnt and Nodal signalling, a contention supported by the observation
that inhibitors of these pathways suppress the expression of the
reporters (not shown) and gene expression (see Fig. 4). Similar to T/
Bra::GFP, TLC2 expression is well defined and polarised (Fig. 2C).
Nodal signalling exhibits weak, non-polarised expression at 24 h, with
a slight bias towards one region of the gastruloid (Fig. 2E).
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Addition of Chi or Wnt3a to the medium between 48 and 72 h
resulted in enhanced levels of T/Bra::GFP expression by 72 h AA
compared with the vehicle controls (Fig. 3A,B), which is
maintained in all gastruloids at the posterior tip at higher levels
than the control (Fig. 3A). Similarly, Nodal expression is greatly
enhanced following the Chi pulse and is expressed across the whole
gastruloid (Fig. 2D), although the Nodal signalling reporter is not
activated as strongly (Fig. 2E). This is consistent with the role of
Wnt signalling in controlling Nodal expression in the post-
implantation epiblast. Gastruloids also alter the expression of the
miRNA reporters, downregulating mir-290 and greatly upregulating
mir-302 (Fig. 2AA").

To garner an understanding of the heterogeneities in T/Bra::GFP
expression over time, we quantified the fluorescence levels of the
reporter in a posterior-to-anterior direction along the spine of the
gastruloids (Fig. 3B-D, Fig. S2A,B; see Materials and Methods)
(Baillie-Johnson et al., 2015). We notice that the changes in shape
and patterns of gene expression are highly reproducible and have
used this feature to extract quantitative information about gene
expression and morphogenesis at single time-points or at regular
intervals over time. Exposure of gastruloids to Chi 48 and 72 h AA
results in a tighter distribution of all the measured variables and a
higher level of sustained fluorescence than when they are exposed to
DMSO (Fig. 3B-D, Fig. S2A; P<0.001 at 72 h and P<0.01 at
120 h). Stimulation with Wnt3a is able to substitute for Chi and
results in similar fluorescence expression profiles over time with a
similar rate of acquisition of an elongated morphology (Fig. 3B-D,
Fig. S2B; P>0.05).

Live imaging of the T/Bra::GFP reporter throughout the process
confirms that Chi enhances its intrinsically polarised expression but
also reveals a global transient response to the Chi pulse throughout
the gastruloid that relaxes to the original position after the pulse
(Fig. 3E, Movies 1 and 2). Using a Sox17:GFP line (Niakan et al.,
2010), which reveals endodermal progenitors, we observe the initial
expression in the anterior pole of the aggregate followed by a
complex migration of some of the expressing cells towards the
posterior region. At 120 h, Sox17::GFP-expressing cells localise
anterior to the T/Bra expression domain following the Chi pulse
(Fig. S3). The final patterning of the reporter showed some
heterogeneity, examples of which are shown in Fig. S1C. Taken
together, these results suggest that during the first 48 h AA,
gastruloids undergo an intrinsic symmetry-breaking process that is
reflected in an AP axis made robust and stable by Wnt/B-catenin
signalling.

Extra-embryonic tissues are not required for axial
organisation in gastruloids

In the embryo, the spatial restriction of T/Bra is concomitant with
the establishment of the AP axis and the onset of gastrulation at
the posterior end of the embryo (Rivera-Pérez and Hadjantonakis,
2015; Tam and Gad, 2004). Genetic analysis has shown that
this pattern arises from interactions between signalling systems
asymmetrically deployed in the extra-embryonic tissues (Rossant
and Tam, 2009).

To determine the mechanism whereby gastruloids are patterned
along the AP axis and to compare the process with that taking place
in embryos, we first analysed the expression of several genes
involved in the AP patterning at 48 h AA, when we first observe
signs of polarisation in gene expression (Fig. 4). At this stage,
gastruloids expressed Fgf4, Fgf5, Axin2, Wnt3, Nodal and cripto
(Cfel) all of which are expressed in the epiblast in the embryo
(Fig. 4). We also detect low levels of Lefiyl (Fig. 4), which in the
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Fig. 3. Wnt/g-catenin signalling stabilises and enhances spontaneous symmetry-breaking and polarisation events in gastruloids. (A) T/Bra::GFP
expression in gastruloids at 24 and 48 h prior to the Chi pulse (left), and examples of gastruloids following a DMSO or Chi pulse (n=28). Chi-mediated stimulation
increases the robustness of the response and reproducibility of the phenotype. (B) Quantification of T/Bra::GFP reporter expression in individual gastruloids over
time following DMSO (n=28), Chi (n=28) or Wnt3a (n=14) treatment. The maximum length of each gastruloid is rescaled to 1 unit and the fluorescence is
normalised to the maximum fluorescence from the Chi treatment. The Wnt3a condition is from a different replicate (indicated by dashed horizontal line). Vertical
line in each plot marks the peak max and the corresponding coordinates denote the position of this value. (C) Statistical analysis of the indicated treatments
showing the normalised root square distance as a measure of the heterogeneity for each condition within each time-point, and the indicated P values as assessed
by non-paired Student’s f-test. Red line indicates the median, the 25th and 75th percentiles are denoted by the bottom and top edges of the box, the whiskers
extend to the most extreme data points, and outliers are indicated by the plus symbol. (D) Heat maps indicating the average fluorescence (fluorescence norm.),
the average area taken up by the standard deviation (StDev Area), average length and the roundness of the gastruloids after the indicated conditions and time-
points from the traces in B (Fig. S2 and Materials and Methods). (E) Live imaging of a gastruloid subjected to a pulse of DMSO (top) or Chi (bottom) between 48
and 72 h AA (n=21/condition). Gastruloid length is indicated by the y axis (posterior=0 pm), time on the x axis and the fluorescence intensity in colour. Early time-
points (24-72 h AA) were imaged using a higher power objective. Scale bars: 50 um (pre-pulse); 100 ym (post-pulse).

embryo is expressed mainly in the extra-embryonic tissues but also
in the epiblast as gastrulation begins. On the other hand, we do not
detect significant expression of genes associated with extra-
embryonic tissues e.g. Bmp4, Dkk, Furin, Lrp2 and Dab2
(disabled homolog 2) with very low levels of cerberus (Cerl)

(Fig. 4). By 72h AA in N2B27, we observed increases in
expression of Nodal, Leftyl and Fgf5, decreases in Fgf4 and the
emergence, at low levels, of Wnt3a (Fig. 4). Some of these patterns
are Wnt/B-catenin signalling-dependent, as exposure to Chi from
48to 72 h AA leads to aclear increase in Nodal, Leftyl and Wnt3a,
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Fig. 4. Gastruloids do not express genes associated with extra-
embryonic tissues and progressively activate posterior markers.
Quantitative RT-PCR analysis of gastruloids at 24, 48 and 72 h AA for genes
associated with the epiblast, extra-embryonic tissues or those expressed in
both tissues (n=~64 gastruloids per time-point). Gastruloids display a more
differentiated phenotype over time, with little detectable expression of genes
associated with the extra-embryonic tissues.

as well as in the Wnt/B-catenin targets Axin2, Dkk and cripto
(Fig. 4).

These observations support the original contention that gastruloids
are made up exclusively of embryonic cells. This conclusion is
reinforced by the absence of detectable BMP expression or signalling
during the first 48 h AA, when the polarisation of T/Bra expression is
taking place as previously described (Fig. 2F, right). Additionally, the
lack of Gata6 expression during the first 72 h of culture also supports
the embryonic composition of the gastruloids (Fig. S4). Before
implantation in the early embryo, Gata6 is associated with the
visceral endoderm and, in the gastruloids, it is first expressed around
96h AA in a domain of cells at the opposite end of the T/Bra
expression domain.

The patterns of gene expression at different times AA, together
with the timing of the cell behaviours associated with gastrulation
that we have described before (Baillie-Johnson et al., 2015; Turner
et al., 2014a, 2016b preprint; van den Brink et al., 2014), provide
landmarks for correlating the development of gastruloids with that
of embryos. They suggest that 48 h AA corresponds to the onset of
gastrulation in the E6.0 embryo and 72 h AA is an approximation of
E7.0. Precise timing will require more-detailed and extensive
expression analysis.

Nodal signalling promotes T/Bra expression

The expression of signalling reporters suggests that, by 48 h AA,
gastruloids are being patterned through an intrinsic mechanism that
relies on Nodal and Wnt signalling (Figs 3 and 4). To gain insights
into this process, we exposed gastruloids to agonists and antagonists
of both signalling pathways before or at the time of exposure to Chi.
Treatment with the Nodal ALK4 receptor inhibitor SB431542
(SB43) (Inman et al., 2002) between 48-72 h AA in the absence of
Chi abolished both the expression of T/Bra::GFP and the
elongation, with gastruloids remaining essentially spherical
(Fig. 5, Fig. S5). Co-treatment with Chi and SB43 (48-72 h)
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severely reduced the levels of fluorescence and greatly impacted the
ability of the gastruloids to elongate in a typical manner, with a large
degree of variation between experimental replicates (Fig. 5, Fig. SS5;
P<0.001 from 72-120 h). These results indicate an absolute
requirement for Nodal signalling in the expression of T/Bra. To
identify a temporal element to this requirement, we pre-treated
gastruloids with SB43 between 24 and 48 h before pulsing them
with Chi (48-72 h). These gastruloids are delayed in expressing T/
Bra::GFP and the levels, generally low, exhibit a high degree of
variation in the location and expression of 7/Bra between
individuals (Fig. 5, Fig. S6; P<0.01 for 72-120 h); however, their
ability to elongate is not affected and is occasionally enhanced
relative to the Chi control (Fig. 5, Fig. S6). These results confirm a
requirement for Nodal in the expression of 7/Bra and suggest that it
is possible to separate the axial elongation from 7/Bra expression.

Addition of Nodal, alone or together with Chi from 48 and 72 h
AA results in an increase in T/Bra expression similar to that observed
with Chi alone (Fig. 5, Figs S5, S6; P>0.05 at all time-points except
Nodal+Chi at 96 h, where P<0.05). However, the elongation is
severely reduced with respect to Chi alone, with gastruloids tending
to remain spheroid or ovoid (Fig. 5, Figs S5,S6). This suggests a
synergy between the two signalling events. To test this further, we
tried to rescue the effects of Nodal inhibition between 24 and 48 h on
T/Bra expression. The maximum average expression of T/Bra::GFP
in gastruloids treated with SB43 between 24-48 h AA, followed by
Chi and Nodal co-stimulation between 48-72 h AA was not as high
as that produced by Chi and Nodal co-stimulation at 48 and 72 h AA.
Although the levels of expression at 96 h were enhanced compared
with Chi and Nodal co-stimulation with less variation (Fig. 5,
Fig. S6; P<0.01), the gastruloids were less polarised and peak
expression was shifted anteriorly; however, the expression was
maintained at higher levels at 120 h (Fig. 5, Fig. S6). Additionally, the
increased elongation that was observed with SB43 (24-48 h) and Chi
(48-72 h) treatment is suppressed in this condition, and gastruloids
tended to stay more spherical, indicating that increased Nodal
signalling at this period negatively impacts the elongation, similar to
Nodal stimulation alone (48-72 h; Fig. 5, Fig. S6).

These results demonstrate an absolute requirement for Nodal
signalling in the expression of 7/Bra and its requirement for precise
modulation of its levels at specific phases for the elongation.
Furthermore, they suggest a negative impact of Nodal signalling on
axial elongation.

Wnt signalling promotes T/Bra expression and axial
elongation in gastruloids

To test the role of Wnt signalling on the patterning process,
gastruloids were treated in different regimes with either recombinant
Wnt3a or its antagonist Dkkl, as well as with small-molecule
inhibitors of Wnt signalling (IWP2, which inhibits secretion of all
Wnt proteins (Chen et al., 2009); and XAV939, which increases
B-catenin degradation through tankyrase inhibition (Huang et al.,
2009) (Fig. 6, Fig. S7). As demonstrated above, Wnt3a is able to
substitute for Chi during the 48-72 h AA period with no significant
difference in the normalised fluorescence traces at any time-point
(Figs 3B,C, 6A,B; P>0.05). Pre-treatment with Wnt3a prior to a
pulse of Chi enhanced the expression of T/Bra::GFP (P<0.05 at48 h
and 120 h), reduced expression heterogeneity at later time-points
(shown in Fig. S8, lower panel, by the normalised root square
distance) and generated an elongated phenotype more rapidly than
in controls (Fig. 6, Fig. S7). By contrast, pre-treatment with Dkk1,
XAV939 or IWP2 before Chi exposure results in a significantly
delayed and variable expression of 7/Bra (Fig. 6, Figs S7, S8; see
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Fig. 5. Nodal signalling is absolutely required for T/Bra induction and correct patterning. (A) Gastruloids stimulated with Chi, SB43, Chi+SB43 or Nodal
alone between 48 and 72 h AA (n=13, 14, 14, 14, respectively), or subjected to either vehicle or SB43 pre-treatment (24-48 h AA) prior to a Chi, Nodal or
Chi+Nodal pulse (48-72 h AA; n=14 per condition). (B) Normalised fluorescence traces shown per condition with corresponding shape descriptors as heatmaps.
SB43 treatment blocks the expression of T/Bra::GFP and cannot be rescued by Chi co-stimulation. Inhibition of Nodal signalling has a positive influence on axial
length and elongation morphology, suggesting that Nodal modulates axial extension (see Figs S5 and S6 for further details and statistical analysis).

significance matrix in Figs S7, S8); however, we observe
differences in the response to Dkk1 and IWP2, which target Wnt
expression and receptor binding, compared with XAV939, which
targets active B-catenin (Fig. 6, Figs S7, S8). This suggests a
requirement for non-canonical Wnt signalling in T/Bra::GFP
maintenance, as reductions in Wnt expression (IWP2) or receptor
interaction (Dkk1) have a more dramatic effect than reductions in
B-catenin activity (XAV939) (Fig. 6, Figs S7, S8). These results
reveal that Wnt signalling is essential and the primary signal
required for the elongation of gastruloids, but that it cooperates with
Nodal in the control of T/Bra expression and polarisation.

A synergy between Nodal and Wnt signalling during axial
organisation has been reported in other organisms (Crease et al.,
1998; Skromne and Stern, 2001; Steinbeisser et al., 1993) and is
supported by our results, which, in addition, suggest different
roles for each signalling system. Whereas Nodal is essential for

the onset of T/Bra expression, Wnt/B-catenin signalling provides
amplification and robustness to the response, promotes Nodal
expression by positive feedback, and mediates axial elongation.

Wnt/g-catenin can generate multiple axes in a Nodal-
dependent manner

To further delimit the requirements for Wnt/B-catenin signalling, we
exposed aggregates to Chi for 24 h at different periods between 24
and 72 h AA, and analysed elongation and T/Bra expression (Fig. 7,
Fig. S9; D.A.T. and A.M.A., unpublished). The experiments reveal
that the 48-72 h period is crucial for both the elongation and correct
patterning of the gastruloids. Although in all cases there is localised
T/Bra::GFP expression and tissue elongation, exposure to Chi
during the 48-72 h period elicits this behaviour most effectively
(Fig. 7A,B, Fig. S9). In the course of these experiments, we
observed that long exposures to Wnt signalling between 24-72 h
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Fig. 6. Wnt/g-catenin inhibition delays but does not inhibit T/Bra::GFP expression. (A,B) T/Bra::GFP gastruloids stimulated with a pulse of Chi (48-72 h AA)
following pre-treatment with vehicle IWP2, XAV939, DKK or Wnt3a (n=14 per condition). Fluorescence traces (A) and heatmaps of the data (B) are shown.
Blocking secretion of Wnt proteins with IWP2 effectively abolishes T/Bra::GFP expression until 96 h AA, whereby highly heterogeneous expression is observed.
Interestingly, the pulse of Chi can partially rescue T/Bra::GFP expression at 72 h following XAV939 pre-treatment, indicating the requirement for Wnt protein
secretion in maintenance of expression. Wnt3a pre-treatment reduces the heterogeneity of the response, better defines the pole of expression and maintains high
T/Bra expression for longer than controls (see Figs S7 and S8 for further details and statistical analysis).

AA, led to gastruloids with more than one focus of elongation and  a less slender elongation phenotype; the fluorescence traces along
T/Bra::GFP expression that was significantly different from the 48-  the spine of the gastruloids, however, are similar to the control 48-
72 h control (Fig. 7A,B, Fig. S9, P<0.05). In contrast, exposure 72 h Chi pulse (Fig. 7A,B, Fig. S9; P>0.05).

between 48 and 96 h AA tends to abolish the focussed polarisation These results reveal two overlapping events in the patterning of
of T/Bra::GFP expression and the gastruloids are wider, resulting in ~ the gastruloids centred around the 48 h AA time that we have
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mapped to ~E6.0 in the embryo. Between 24 and 48 h AA there is
autonomous axial organisation from within the gastruloid that is
stabilised through Wnt/B-catenin signalling but is critically
dependent on Nodal signalling. Following this period (after 48 h),
it is essential that Nodal signalling is tightly regulated, as it
negatively impacts the elongation potential of the gastruloid and
long exposures abolish elongation without altering the localisation
of T/Bra::GFP expression. This highlights the period between 24
and 48 h as being crucial for axial establishment, which is then
consolidated in the period after 48 h AA.

BMP promotes T/Bra expression but not axial elongation

In the embryo, the expression of Nodal and Wnt3 is thought to be
modulated by BMP signalling (Rossant and Tam, 2009; Stern,
2006; Takaoka and Hamada, 2012) and it has been suggested that
this is also the case in vitro (Harrison et al., 2017). As described
above, a reporter for BMP signalling does not exhibit any detectable
expression in the early stages of patterning (Figs 2E, 8A,B,
Fig. S10). Consistent with this, exposure of the gastruloids to

A

dorsomorphin H1 (DMH1) (Neely et al., 2012), a small molecule
inhibitor of BMP signalling, prior to the Chi pulse did not
significantly alter the expression pattern of T/Bra::GFP or the
morphology (length and roundness) of the gastruloids up to 96 h
AA (Fig. 8A,B, Fig. S10; P>0.05). Addition of BMP between 24-
48 h AA followed by a Chi pulse resulted in a more-focused
expression of T/Bra::GFP at 120 h and, although the length of the
gastruloids was broadly similar to that of the control there was a
clear effect on the elongation process (Fig. 8A,B, Fig S10). On the
other hand, when BMP is applied instead of Chi between 48 and
72 h AA, although the majority of gastruloids express the BMP
reporter (~88%) albeit at a much lower level than in the Chi-treated
control, only half of these exhibit polarisation. Additionally, the
frequency of elongation is greatly reduced when compared with Chi
(~31% elongated; Fig. 8C). This suggests that, in our in vitro
system, BMP cannot substitute for Chi. Application of BMP
between 24 and 48 h AA leads to a weak focus of expression that is
not consistently placed at the elongating tip, and no elongation is
observed (Fig. 8B, Fig. S10). Altogether, these results suggest that
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either vehicle (top), BMP4 (middle) or DMH1 (bottom; n=12, 13 and 13 at 120 h, respectively), an inhibitor of BMP signalling between 24 and 48 h AA.

Normalised fluorescence traces shown per condition (A) with corresponding fluorescence and shape descriptor quantification (B). Inhibition of BMP signalling by

DMH?1 or activation by BMP4 (24-48 h AA) does not alter the initial patterning of gastruloids; BMP treatment at this time has minimal effect on the
subsequent patterning. (C) Gastruloids imaged at 120 h by wide-field microscopy following 24-48 h of vehicle or BMP4 stimulation ( pink horizontal box) followed
by either vehicle, Chi or BMP4 as indicated (blue horizontal box) between 48 and 72 h AA (n=16 per condition). (D) Stimulation schematic. BMP4 is unable to
substitute for Chi in terms of the elongation and patterning of T/Bra, and its sustained expression over time (refer to Fig. S10 for further details and statistical

analysis). Scale bar: 200 ym.
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Fig. 9. Tight temporal regulation of Nodal signalling is required for axial elongation and proper axial patterning. (A) Nodal~'~ gastruloids pulsed with either
DMSO or Chi (48-72 h AA) following a pulse of the vehicle or 100 ng/ml Nodal (24-48 h) and (B) the quantification of morphology. Four examples (i-iv) are shown
for each condition. Arrows indicate protrusions. Nodal pre-stimulation suppresses protrusions; Chi stimulation enhances an elongated phenotype but does not
suppress protrusions. The wild-type phenotype can be rescued if Chi-treated gastruloids have been previously exposed to Nodal. Addition of Nodal at different
time-points is not able to rescue the elongations (left and Fig. S11). (C) The number of protrusions in each condition. Significance was determined using the
Mann-Whitney U test with Bonferroni adjustment. (D) Immunofluorescence of Nodal~'~ gastruloids treated as indicated and stained at 120 h with Hoechst (blue),
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Scale bars: 100 ym in A; 100 um (top) and 50 um (bottom) in D. Sample sizes (n) are shown above C.

BMP signalling does not play a significant role in the patterning or
progression of gastruloids.

A polarised source of Nodal signalling is not required for
gastruloid patterning

Exposure of gastruloids to Nodal at 48-72 h AA does not lead to
overall expression of T/Bra (Fig. 5), suggesting that, like Wnt
signalling, a localised source of Nodal may not be required for its
effect. We tested this hypothesis using Nodal mutant mESCs
(Collignon et al., 1996) (Fig. 9, Fig. S11). When aggregated under
standard conditions and grown in N2B27 supplemented with the
appropriate vehicle controls, Nodal mutant gastruloids remain
spherical or ovoid, exhibit a number of protrusions and, by 120 h
AA, a large proportion (~90%) have developed small bulbous
structures at varying locations (Fig. 9A,B, Fig. S11). These data
confirm the absolute requirement for Nodal in symmetry breaking.
We then attempted to rescue these gastruloids using various
signalling regimes. Addition of Nodal (24-48 h AA) reduces the
frequency of protrusions but the number is not significantly
different from the control (Fig. 9B). Treatment with Chi (48-72 h)
leads to an increase in the proportion of elongated gastruloids
(~50%), supporting a role for Wnt signalling in elongation
(Fig. 9A). However, the average number of protrusions was
similar to controls, with some showing four or more protrusions;
the size of the protrusions was also increased relative to the control,
but not statistically significantly (Fig. 9B, Fig. S11). Application of
Nodal (24-48 h) followed by Chi (48-72 h) drastically increased the
proportion of gastruloids displaying an elongated non-protrusion
phenotype (0 to 50%), and the number of protrusions was greatly
reduced, but not eliminated, compared with the vehicle to Chi and
vehicle to DMSO controls. Immunofluorescence revealed that
Nodal mutant gastruloids treated with Chi were unable to upregulate
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the posterior markers T/Bra and Cdx2 compared with previous
observations (Fig. 1). However, addition of Nodal prior to the Chi
pulse rescued the patterning and location of the reporters (Fig. 9C).

To assess whether the timing and duration of Nodal addition are
important for the rescue of the Nodal mutant phenotype, Nodal was
applied at 48-72, 72-96 and 24-72 h AA, in addition to Chi between
48 and 72 h AA, and gastruloid morphology was assessed at 120 h
AA (Fig. 9B, Fig. S11). Although there was some variation between
experimental replicates, applying Nodal at later time points reduced
the ‘no protrusion-elongated’ phenotype while increasing the ‘no
protrusions, no elongation’ morphology (Fig. 9B, Fig. S11)
compared with the 24-48 h Nodal to 48-72 h Chi condition. A
longer duration of Nodal signalling did not result in effects that were
different from those obtained for 72-96 h Nodal. These data reveal
the absolute requirement for Nodal signalling for the symmetry-
breaking event, and that tight control of Nodal signalling is
necessary for proper gastruloid elongation.

DISCUSSION

We find that gastruloids, mammalian embryonic organoids, develop
an embryo-like AP organisation that is characteristic of the tail
domain of the embryo in the absence of external patterned
influences. Significantly, they organise an AP axis in the absence
of extra-embryonic tissues, which have been shown to drive axial
organisation during embryogenesis (Rossant and Tam, 2009; Stern,
2006; Takaoka and Hamada, 2012). This observation extends our
previous finding (van den Brink et al., 2014) and leads us to suggest
that, in vivo, the role of the extra-embryonic tissues might not be to
induce axial organisation but rather to bias an intrinsically driven
symmetry-breaking event similar to the one we report here that
occurs in the embryo (Turner et al., 2016b, 2017 preprint). The
deployment of signalling centres around the embryo thus provides a
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robust source of spatial information that positions the onset of
gastrulation in a defined and reproducible location. If the symmetry
breaking were stochastic, it would be difficult to link gastrulation to
the interactions of the emerging mesoderm cells with extra-
embryonic tissues in a reproducible manner. Our suggestion is
supported by the observation that, in the absence of extra-embryonic
signals, the embryo still exhibits a degree of patterning and axial
organisation, although this is somewhat variable (Pereca-Gomez
et al., 2002; Yamamoto et al., 2004). In addition, a recent report
demonstrates that trophectoderm stem cells appear to impose
polarisation on T/Bra expression in aggregates of ESCs (Harrison
et al., 2017) that, as in our case (van den Brink et al., 2014), lack
visceral endoderm. However, this report from Harrison et al. (2017)
suggests a strict requirement for extra-embryonic tissues,
specifically trophoectoderm, for the expression of T/Bra, which is
at odds with our observations that the expression and localisation of
T/Bra occurs in over 90% of the extra-embryonic-free aggregates
(Baillie-Johnson et al., 2015; Turner et al., 2016b, 2017 preprint;
van den Brink et al., 2014) and with previous reports that also
showed T/Bra polarisation in embryoid bodies (ten Berge et al.,
2008; Marikawa et al., 2009). There are a number of explanations
for this discrepancy. It may be that the interaction between extra-
embryonic and embryonic tissues raises the threshold of the
patterning events and creates interdependencies for relative spatial
biases (see also Turner et al., 2016a). Alternatively, the spatial
confinement of the TSCs, and/or receptor-ligand interactions of
ESCs with Matrigel components, could create conditions that affect
the rate and the frequency of the symmetry-breaking events that we
observe in our experiments. The resolution of these discrepancies
will require further experiments in both systems. In our case, we
have shown that the transition from the pluripotent to the primed
state follows a pattern similar to that of the embryo and it will be
interesting to see if this is also the case when the ESCs are confined
in Matrigel.

A most important consequence of the symmetry breaking event
in the embryo is the polarised onset of 7/Bra expression (Rivera-
Pérez and Magnuson, 2005; Yoon et al., 2015). A connection
between the expression of T/Bra and Wnt signalling had been
reported in assorted EBs (ten Berge et al., 2008), but the
reproducibility and precision of this process in gastruloids
allows us to investigate its origin. In gastruloids, the joint action
of Nodal and Wnt signalling promotes the expression and
localisation of 7/Bra expression between 24 and 48 h AA, but
the stabilisation of this pattern requires a burst of Wnt signalling
between 48 and 72 h AA. An interpretation of our results is that
Nodal provides the initial input on the expression of 7/Bra and the
organisation of an AP axis, but that these effects are enhanced and
consolidated by Wnt/B-catenin signalling. This possibility is
supported by the observation that, in the embryo, 7/Bra expression
is initiated and localised in the absence of Wnt signalling, though
this pattern is not robust (Tortelote et al., 2013). Similar
interactions between Nodal and Wnt/B-catenin signalling have
been described in chick and frog embryos (Crease et al., 1998;
Skromne and Stern, 2001; Steinbeisser et al., 1993) and we have
also shown that they occur in an adherent culture system of
primitive streak formation (Turner et al., 2014b). It is therefore
likely that they also occur in the mammalian embryo. At the
molecular level, this synergy is supported by reports of molecular
interactions between Smad2, Smad3 and B-catenin in the
regulatory regions of genes expressed in the primitive streak and
specifically of Nodal and T/Bra (Dahle et al., 2010; Estaras et al.,
2015; Funa et al., 2015).

Mechanisms to explain how Nodal leads to symmetry breaking
during AP axis formation often invoke reaction-diffusion
mechanisms (Juan and Hamada, 2001; Marcon et al., 2016;
Miiller et al., 2012). Accordingly, interactions between Nodal and
its inhibitor and downstream target Leftyl lead to the asymmetric
localisation of both proteins and to the asymmetric expression of
target genes, e.g. 7/Bra. Surprisingly, we observe that ubiquitous
exposure of gastruloids to Nodal leads to polarisation of 7/Bra
expression and, moreover, that this will occur when high ubiquitous
concentrations of Nodal are provided to a Nodal mutant gastruloid.
This observation challenges many of our current notions about the
patterning driven by Nodal and demonstrates that Nodal needs not
be localised to generate an axis. One possible explanation for this
observation that is consistent with our results is that Nodal
signalling initiates the expression of 7/Bra but that it is not
involved in its refinement and maintenance, which depend on a
positive feedback between Wnt/B-catenin signalling and T/Bra
(Turner et al., 2014b). Indeed, several Wnt genes are known to be
downstream targets of T/Bra (Evans et al., 2012), which, in turn, is a
target of Wnt/B-catenin signalling, thus providing the elements for a
positive-feedback loop that could be involved in the patterning and
localisation of T/Bra and its downstream targets. In agreement with
this, we observe a spatial correlation between the pattern of Wnt
signalling and of T/Bra expression (Fig. 1C,D).

Our results also highlight that, in addition to, and independently
of, its role in T/Bra expression and of its interactions with Nodal/
Smad2/Smad3 signalling, Wnt/B-catenin signalling is central to
axial elongation. This provides independent proof of this well-
established phylogenetic relationship (Petersen and Reddien, 2009).
Timing of exposure suggests two different phases to this
involvement. Long exposures to Wnt signalling early (24-72 h
AA; E5.0-E7.0 in the embryo) can lead to multiple axes, only some
of which express T/Bra; this mirrors situations with gain of function
of Wnt signalling (Merrill et al., 2004; Popperl et al., 1997).
Increased activity later on (48-96 h AA; E6.0-E8.0) results in
abolition of the polarity and ubiquitous expression of T/Bra. These
observations highlight two temporally separate activities of Wnt: a
first one in the establishment and enhancement of the AP axis,
probably together with Nodal signalling; followed by a second
phase of stabilisation of T/Bra expression and axial elongation. As
in the case of Nodal, but in a more manifest manner, the observation
that a localised source of Wnt/B-catenin activity is not necessary for
the polarisation of T/Bra expression and the elongation of the
gastruloid, questions the widespread notion for a role of Wnt
signalling gradients in pattern formation and supports views in
which the function of Wnt signalling is to control the signal-to-noise
ratio of events induced by other means (Martinez Arias and
Hayward, 2006; Mateus et al., 2009).

A remarkable feature of gastruloids is the degree to which their
spatial organisation resembles the posterior region of an E8.5
embryo. However, this structure, though coherent, is partial, e.g.
gastruloids lack the most anterior structures (van den Brink et al.,
2014). In this regard, they resemble Dkk (Fossat et al., 2011) or
some Smad2/Smad3 (Dunn et al., 2004) mutants and show that it is
possible to orientate an axis without an identifiable head or brain. A
likely cause for this deficiency is a combination of the exposure to
high levels of Wnt signalling between 48 and 72 h AA, which will
suppress anterior development (Arkell et al., 2013; Popperl et al.,
1997), and the lack of a prechordal plate and anterior mesendoderm,
which are essential for anterior neural induction (Andoniadou
and Martinez-Barbera, 2013). Thus, although signalling from
the extra-embryonic tissues might not be strictly necessary for the
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establishment of an AP axis, it might be essential not only for the
reliable positioning of the initiation of gastrulation, but also for the
location of the brain at the opposite pole.

Over the past few years a number of experimental systems have
emerged in which ESCs become spatially patterned and each of them
can make a contribution to our understanding of the connection
between cell fate assignments and the polarisation of the embryo
(Bauwens et al., 2008; Desbaillets et al., 2000; Etoc et al., 2016;
Harrison etal., 2017; Warmflash et al., 2014). The system that we have
developed has some advantages, in particular its 3D self-organisation,
reproducibility and robustness allow it to be used in long-term studies
and screens. However, despite the resemblance to early embryos, the
current generation of gastruloids exhibit differences in detail that
create the challenge of what it takes to make the similarities more
obvious. In this process, engineering will play an important role and
help the rational design of tissues and organs. Importantly, we feel that
our findings suggest that gastruloids could be a useful substitute for
embryos in the study of early development.

MATERIALS AND METHODS

Cell lines and routine cell culture

ARS::mCherry [Nodal signalling reporter (Serup et al., 2012)], T/Bra::GFP
(Fehling et al., 2003), GATA6::H2B-Venus (Freyer et al., 2015), IBRE4::
Cerulean (Serup et al., 2012), miR-290-mCherry/mir-302-eGFP (Parchem
et al., 2014), Nodal::YFP reporter (Papanayotou et al., 2014), Nodal™'~
(Camus et al., 2006), Sox17::GFP (Niakan et al., 2010) and TCF/LEF::
mCherry (TLC2) (Faunes et al., 2013; Ferrer-Vaquer et al., 2010) were
cultured in GMEM supplemented with LIF, foetal bovine serum, non-
essential amino acids, glutamax, sodium pyruvate and B-mercaptoethanol
(ESL medium) on gelatinised tissue-culture flasks and passaged every
second day as previously described (Faunes et al., 2013; Kalmar et al., 2009;
Turner et al., 2014a,b,c). If cells were not being passaged, half the medium
in the tissue culture flask was replaced with ESL. All cell lines were
routinely tested and confirmed to be free from mycoplasma. See Table S3
for the cell lines used and Table S4 for the small molecules and recombinant
proteins used in this study.

Gastruloid culture and application of specific signals

Aggregates of mouse ESCs were generated using an optimised version of
the previously published protocol (Baillie-Johnson et al., 2015; van den
Brink et al., 2014) (for further details, see supplementary Materials and
Methods). Table S3 details the number of cells required to generate
gastruloids for the cell lines used in this study.

Immunofluorescence, microscopy and data analysis

Gastruloids were fixed, stained with the required antibodies (Table S2) and
imaged by confocal microscopy according to the protocol previously
described (Baillie-Johnson et al., 2015). Wide-field, single-time-point and
time-lapse images of gastruloids were acquired using a Zeiss AxioObserver.
Z1 in a humidified CO, incubator (5% CO,, 37°C) with Illumination
provided by an LED white-light system (Laser2000) and emitted light
recorded using a back-illuminated iXon888 Ultra EMCCD (Andor
Technology). Images were analysed using FIJI (Schindelin et al., 2012)
and plug-ins therein as previously described (Baillie-Johnson et al., 2015;
Preibisch et al., 2009; Soroldoni et al., 2014). The were data analysed and
plotted as described in the supplementary Materials and Methods.

Statistical analysis

Statistical analysis of the normalised fluorescence traces of the gastruloids
was performed in Matlab (Mathworks) and is described in the
supplementary Materials and Methods.

Quantitative RT-PCR
Gastruloids (n=~64 per time-point) from T/Bra::GFP mouse ESCs,
subjected to a Chi or DMSO pulse (between 48 and 72 h AA), harvested
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at 48 or 72 h AA, trypsinised, pelleted and RNA extracted using the RNeasy
Mini kit (Qiagen, 74104) according to the manufacturer’s instruction as
previously described (Turner et al., 2014c). Samples were normalised to the
housekeeping gene Ppia. The sequences for the primers are described in
Table S5.

Orientation of gastruloids

To define the AP orientation of gastruloids, we have assigned the point of
T/Bra::GFP expression as the ‘posterior’, because the primitive streak,
which forms in the posterior of embryo, is the site of T/Bra expression in the
embryo (Beddington et al., 1992; Herrmann, 1991; Wilkinson et al., 1990).
At least two biological replicates were performed for each condition.
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